В отличии от микояновской конструкции МиГ-2000 АНТК им.Туполева продвинулось намного дальше и в случае благоприятного стечения обстоятельств первый в мире ВКС мог появиться уже к 2000 году. Но, как известно, политические события в СССР полностью “похоронили” этот перспективный проект. История Ту-2000 началась ещё в 1970-е годы, когда ОКБ-156, частично в инициативном порядке, приступило к разработке ВКС для нужд армии со стартовой массой порядка 300 тонн. Было предложено несколько проектов, включая довольно оригинальные ...
Так, рассматривалась возможность использования ЖРД на тепловыделяющих элементах, ядерной силовой установки, а также установка плазменных или ионных двигателей. Проекты посчитали интересными, но воплощать их в жизнь не спешили – в те годы военные отдавали большее предпочтение ракетным системам. Катализатором процесса развития советских ВКС послужило появление “Space Shuttle”. После 1981 года работы в этом направлении резко активизировались и спустя три года ОКБ-156 выступило с рядом конкретных технических предложений по созданию авиационно-космической системы на базе одноступенчатого орбитального самолёта. В качестве силовой установки предлагалось использование двигателей на основе ЖРД. Старт мог производится как с земли, так и с самолётов-носителей. В скором времени на рассмотрение поступили проекты с комбинированной силовой установкой (ТРД+ПВРД+ЖРД), один из которых стал прообразом ВКС под индексом “2000” или Ту-2000. Этот вариант был наиболее осуществим при условии решения двух проблем – повышение экономичности и увеличение запаса топлива на старте.
Самолёт “2000” имел схему “бесхвостка” с расположением двигателей под фюзеляжем и треугольным крылом малого удлинения. Все элементы ВКС конструктивно интегрировались вокруг силовой установки, состоявшей из следующих компонентов :
- 4 ТРД в хвостовой части фюзеляжа;
- основной разгонный ШПВРД (располагался в задней части фюзеляжа);
- 2 ЖРД для маневрирования в безвоздушном пространстве (устанавливались между ТРД).
Столь большое количество двигателей потребовалось для обеспечения максимальной экономичности на различных режимах полёта.
Фюзеляж Ту-2000 большого размера, в основном занят топливными баками с жидким водородом. В носовой част» фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа. На экспериментальном ВКС будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.
За кабиной экипажа находится технический отсек радиоэлектронного оборудования, в этот же отсек убирается передняя стойка шасси. Средняя и задняя части фюзеляжа заняты топливным баком с жидким водородом. Для питания ЖРД окислителем в хвостовой части фюзеляжа установлен кислородный бак. Все двигатели в качестве горючего используют жидкий водород из единой топливной системы.
Шасси ВКС нормальной трехточечной схемы с носовым колесом: передняя стойка со спаренными колесами малого диметра с высоким давлением в пневматиках колес, основные стойки – одноколесные, убираются в фюзеляж в отсеки в районе крыла.
Для того, чтобы одноступенчатый ВКС был конкурентоспособен в сравнении с другими транспортными ракетно-космическими средствами, при его проектировании необходимо обеспечить выполнение ряда требований к летным характеристикам. ВКС должен обладать способностью совершать взлеты и посадки со стандартных взлетно-посадочных полос длиною до 3000 м, совершать полеты с разворотом на дозвуковой скорости после взлета для выхода в заданную точку начала разгона и перед посадкой для захода на заданный аэродром, осуществлять перелеты для изменения аэродрома базирования, быстро выполнять разгон до заданной скорости и высоты, включая выход на круговую орбиту, выполнять неоднократные орбитальные маневры, выполнять автономный орбитальный полет продолжительностью до суток, выполнять крейсерский полет в атмосфере с гиперзвуковыми скоростями, выполнять торможение со снижением при возвращении с орбиты, в процессе разгона до орбитальных параметров и в процессе снижения выполнять маневрирование для прохода заданной трассы и выхода на заданную орбиту и заданный аэродром, изменять плоскость орбитального полета.
Дополнительным “пинком” к продвижению проекта послужила информация о ВКС X-30, создаваемом фирмой Rockwell в рамках проекта NASP (National Aero-Space Plane). Учитывая эту ситуацию были изданы постановления правительства СССР от 27 января и 19 июля 1986 о создании аналогичной воздушно-космической системы. Далее, 1 сентября Министерство обороны выпустило техническое задание на одноступенческий многоразовый воздушно-космический самолет (МВКС), который должен был решать военных задач как в атмосфере, так и в ближнем космическом пространстве, а также обеспечить высокоскоростную трансатмосферную межконтинентальную транспортировку.
В конкурсе приняли участия ОБК Туполева, ОКБ Яковлева и НПО “Энергия”, но безусловным фаворитом был конечно же Ту-2000, разработка которого велась больше 10 лет. “Туполевцы” оказались более последовательными и спланировали развитие МВКС в два этапа.
Этап 1 – создание экспериментального самолёта Ту-2000А. Полётная масса этой машины оценивалась в 70-90 тонн, скорость – около М-6 на высоте 30 км. Геометрические размеры: длина – 60 м, размах крыла – 14 м, стреловидность по передней кромке крыла – 70 град.
Этап 2 – здесь имелись варианты: космический бомбардировщик Ту-2000Б, МВКС или пассажирский гиперзвуковой лайнер.
Ту-2000Б проектировался как двухместный бомбардировщик с дальностью 10,000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6 на высоте в 30 км.
Ту-2000 в варианте МВКС имел бы стартовый вес 260 тонн, высоту полета более 60 км и скорость от М=15 до М=25 (орбитальная скорость). Полезная нагрузка 8-10 тонн может выводиться на орбиту высотой 200 км.
Проект лайнера не находился тогда в числе приоритетных и его детальная проработка не производилась.
Итак, в закату Советского Союза и его военно-промышленного комплекса работы по Ту-2000А велись в полном объёме. Конечно, “перестройка” изрядно подкосила финансирование военных проектов, но даже тогда сделано было немало. К декабрю 1991 года были изготовлены кессон крыла из никелевого сплава, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы. Заметим, что американцы застряли со своим Х-30 лишь на попытке постройки секции фюзеляжа из титанового сплава. Если был не коллапс СССР проект Ту-2000 вполне мог быть реализован к 2000 году, но история рассудила иначе.
Так что же было дальше? Летом 1992 года рассекреченный проект Ту-2000 решили поставить на коммерческую основу (другого выхода у “туполевцев” просто не оставалось), после чего макет МВКС был показан на выставке “Мосаэрошоу-92″ на стенде ОКБ им. А. Н. Туполева. Как обычно, высшим руководством России “пачками” раздавались обещания о “поднятии оборонного престижа” и т.д., но реально ничего делалось. В скором времени финансирование вообще прекратили и в настоящее время Ту-2000 считается “замороженным” проектом. Небольшая надежда на продолжение работ была в середине 1990-х гг. Тогда даже выполнили финансовые расчеты – в ценах 1995 года стоимость постройки одного Ту-2000 равнялась 450 млн.долларов при общих затратах на опытно-конструкторские разработки около 5,29 млрд.долларов. Стоимость каждого запуска ВКС оценивалась в 13,6 млн. долларов при темпе 20 пусков в год. Предполагалось также, что с момента начала необходимого финансирования НИОКР можно выполнить за 13-15 лет.
Как видим, проект был совсем не дешевым и потянуть его российская оборонка не смогла в принципе. Даже в 2010 году вопрос о возобновлении работ по Ту-2000 не поднимался. Справедливости ради отметим, что проект NASP X-30, столь рекламируемый в середине 1980-х гг., через несколько лет “заглох” и в 1992 году его финансирование тоже прекратили. Окончательное решение о закрытии программы X-30 было принято годом позже.
Практически все работы, связанные с авиационно-космической тематикой, в ОКБ А.Н.Туполева были свернуты в начале 1960-х годов. Вновь к этой тематике ОКБ возвращается в 1970-ые годы, когда в СССР начинаются перспективные работы над авиационными воздушно-космическими системами на базе одноступенчатых орбитальных самолетов. Это принципиально новое направление, родившееся на стыке авиационной, ракетной и космической техники, интенсивно разрабатывается начиная с середины 70-х годов ведущими аэрокосмическими фирмами мира. По замыслам разработчиков, реализация столь сложной и масштабной программы создания подобного воздушно-космического самолета (ВКС) должна позволить не только создать принципиально новый класс летательных аппаратов, способных экономически и экологически эффективно решать многие проблемы военного и гражданского характера, но и даст возможность освоить перспективные технологии, которые будут определять во многом уровень передовых отраслей ведущих стран в XXI веке.
Увеличение частоты запусков ракетно-космических систем и дальнейший их рост в перспективе ставит перед разработчиками ряд экономических и экологических проблем и ограничений. Необходимо снизить стоимость вывода полезной нагрузки на орбиту, прекратить засорение ближнего космоса отработанными частями ракетоносителей, значительно уменьшить или даже ликвидировать территории, отчуждаемые для падения отработанных ступеней. Большое значение имеет обеспечение гарантированной частоты запусков, снижение стоимости и сложности наземного комплекса, а также гибкости базирования.
Обеспечить все эти весьма противоречивые требования можно в случае создания и широкого использования одноступенчатых воздушно-космических летательных аппаратов горизонтального взлета и посадки многоразового использования. Наиболее важным фактором для улучшения экономических показателей является возможность эксплуатации ВКС подобно самолету, что позволит значительно сократить количество наземного обслуживающего персонала и исключить сложные элементы наземного комплекса (системы вертикальной сборки, стартовые площадки, специальные мероприятия и помещения для хранения блоков первых ступеней и т.д.). Значительно сокращаются затраты на оперативное техническое обслуживание (за счет сокращения времени на подготовку к повторному вылету), что приближает ВКС по характеристикам эксплуатационной технологичности к существующим тяжелым самолетам.
Одноступенчатым ВКС целесообразно решать все задачи, связанные с выведением грузов малой и средней размерности на относительно низкие орбиты. Эксплуатационная гибкость подобного ВКС позволяет один и тот же летательный аппарат использовать для выполнения практически любого из возможных заданий с помощью системы сменных модулей.
В 1968-1971 годах в ОКБ А.Н.Туполева в проработке находилось несколько технических предложений по ВКС с горизонтальным стартом и посадкой. Взлетная масса летательных аппаратов, согласно проектов, достигала 300 тонн. В качестве силовой установки предлагалось использовать ЖРД на тепловыделяющих элементах с использованием ЯСУ, в качестве рабочего тела - водород. Рассматривались варианты многоэтапного вывода полезных нагрузок с ВКС, находящихся на орбите вокруг Земли, на межпланетные орбиты с использованием ионных и плазменных маршевых двигателей. В тот период основное внимание ОКБ было сосредоточено на СПС-1 и многорежимных тяжелых боевых самолетах. На развертывание крупномасштабных и дорогостоящих исследовательских работ по одноступенчатым ВКС не было ни средств, ни свободных необходимых научно-технических и людских ресурсов, кроме того, до первых успехов в американской программе по «Шатлу» военные не проявляли особого интереса к проектам отечественных ВКС, делая традиционно ставку в оборонных космических программах на традиционные ракетно-космические системы. Поэтому все эти оригинальные предложения ОКБ не вышли из стадии эмбрионального состояния.
С началом работ на Западе по одноступенчатым ВКС, работы по данной тематике оживились и в СССР. К середине 80-х годов совместно с ЦАГИ, ОКБ Н.Д.Кузнецова, с другими предприятиями и организациями отечественного ВПК ОКБ подготовило ряд конкретных технических предложений по созданию авиационно-космической системы на базе одноступенчатого орбитального самолета с маршевой и корректирующей силовыми установками на основе ЖРД, с наземным или воздушным стартом с тяжелых самолетов-носителей.
Следующим этапом в создании одноступенчатого ВКС в ОКБ стало начало проектирования летательного аппарата с маршевой силовой установкой, построенной на комбинации двигателей принципиально различного типа (ТРД + ПВРД + ЖРД). За прошедшие годы ОКБ удалось накопить большой научно-технический и технологический материал, дающий возможность перейти к практической реализации проекта одноступенчатого ВКС. По теме одноступенчатого орбитального ВКС ОКБ за эти годы подготовило несколько проектов, отличавшихся различными техническими решениями в части компоновки летательного аппарата и его силовой установки. Одним из последних проектов стал проект, получивший обозначение самолет «2000» или Ту-2000 с комбинированной силовой установкой (ТРД + ШПВРД + ЖРД).
Ответом на разработку США трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента. 1 сентября Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту; обеспечить высокоскоростную трансатмосферную межконтинентальную транспортировку, и решение военные задач как в атмосфере, так и в ближнем космическом пространстве. Из представленных ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» проектов одобрение получил Ту-2000.
Исследования, проведенные в ОКБ по проблеме создания одноступенчатого ВКС, дают основание утверждать, что одноступенчатый ВКС способен стать реальностью, если решить, в частности, проблемы существенного повышения экономичности силовой установки и значительно поднять относительный запас топлива на взлете летательного аппарата.
По мнению ОКБ, на сегодняшний день, существенно повысить экономичность силовой установки можно, используя в качестве окислителя кислород воздуха, то есть применяя ВРД. Единственным типом ВРД, который можно использовать при гиперзвуковых скоростях полета, на которые рассчитывается ВКС, является ПВРД. В свою очередь, использование ПВРД требует выполнения полета в атмосфере с высокими скоростными напорами для ограничения габаритов и массы силовой установки. Высокие скоростные и тепловые нагрузки конструкции летательного аппарата требуют увеличения массы пустого аппарата. Это увеличение целесообразно лишь тогда, когда существенно снижается общая масса бортового запаса топлива. Использование в качестве окислителя атмосферного воздуха позволяет уменьшить секундный расход топлива, однако существенное снижение общей массы ВКС может быть достигнуто только при условии работы ПВРД в широком диапазоне чисел М полета (широкодиапазонный ПВРД - ШПВРД). Это дает существенную разность между уменьшением массы топлива и увеличением массы конструкции, связанным с использованием ПВРД, и обеспечивает выигрыш в относительной массе полезной нагрузки. Другим определяющим условием реализации одноступенчатого ВКС является использование в качестве топлива жидкого водорода. Уникальное сочетание высокой массовой теплотворной способности и высокой удельной теплоемкости позволяют создать более легкие и компактные двигатели с требуемым удельным расходом топлива. Одновременно использование хладоресурса жидкого водорода дает возможность спроектировать достаточно легкую охлаждаемую конструкцию планера и воздухозаборника, а также обеспечивать необходимые температурные режимы бортовых систем и оборудования. Применение ПВРД требуют большую часть разгонной траектории до орбитальной скорости выполнять в плотных слоях атмосферы, что вызывает сильный кинетический нагрев конструкции, особенно передних кромок крыла, воздухозаборника, носка фюзеляжа и всей нижней поверхности ВКС. Расчеты, проведенные в ОКБ, показали, что без применения жидкого водорода в качестве охлаждающего хладоагента не удается обеспечить нормальный температурный режим конструкции планера, самих ПВРД, оборудования, а также обеспечить нормальные условия для экипажа, грузов, в том числе и специальных, а в перспективе для пассажиров.
В связи с низкой плотностью жидкого водорода ведутся исследования по созданию технологии производства и хранения на борту ЛА переохлажденного (шугообразного) водорода.
Из условий применения на ВКС основной разгонной силовой установки на базе ПВРД для него наиболее рационально применение комбинированной силовой установки, включающей экономичные ТРД, работающие в диапазоне скоростей, соответствующих диапазону М=0-2,5, ПВРД (ШПВРД), обеспечивающих разгон до М=20-25, и ЖРД для доразгона до орбитальной скорости и маневрирования на орбите.
Для того, чтобы одноступенчатый ВКС был конкурентоспособен в сравнении с другими транспортными ракетно-космическими средствами, при его проектировании необходимо обеспечить выполнение ряда требований к летным характеристикам. ВКС должен обладать способностью совершать взлеты и посадки со стандартных взлетно-посадочных полос длиною до 3000 м, совершать полеты с разворотом на дозвуковой скорости после взлета для выхода в заданную точку начала разгона и перед посадкой для захода на заданный аэродром, осуществлять перелеты для изменения аэродрома базирования, быстро выполнять разгон до заданной скорости и высоты, включая выход на круговую орбиту, выполнять неоднократные орбитальные маневры, выполнять автономный орбитальный полет продолжительностью до суток, выполнять крейсерский полет в атмосфере с гиперзвуковыми скоростями, выполнять торможение со снижением при возвращении с орбиты, в процессе разгона до орбитальных параметров и в процессе снижения выполнять маневрирование для прохода заданной трассы и выхода на заданную орбиту и заданный аэродром, изменять плоскость орбитального полета.
Из-за сложности решения комплекса научно-технических, технологических и эксплуатационных проблем создания одноступенчатого ВКС в ходе проектирования решено было, что целесообразно практические работы начать с постройки и испытаний экспериментального ВКС несколько меньшей размерности, чем окончательный вариант. На этом летательном аппарате будут проверены в реальных условиях полета новые концепции и технические решения, заложенные в аэродинамическую схему, силовую установку, конструкцию и теплозащиту планера, самолетных систем, двигателей и оборудования. Необходимость создания экспериментального ВКС обусловлена, кроме всего прочего, отсутствием условий натурного моделирования на наземных установках при числах М=6...8 явлений аэротермодинамики, процессов горения в двигательной установке, процессов нагрева конструкции.
Принципиальная новизна разрабатываемого ВКС, неопределенность в характере внешних воздействий на него, отсутствие в настоящее время проверенных технических решений по ряду направлений, а также необходимого набора конструкционных материалов и полуфабрикатов обуславливают необходимость поэтапной разработки и испытаний экспериментального ВКС. Поэтому вся программа по созданию экспериментального ВСК была разбита на два этапа: создание экспериментального гиперзвукового самолета ЭГС с максимальной скоростью полета до М=5..6 и создание экспериментального ВКС - прототипа одноступенчатого многоразового ВКС, обеспечивающего проведение летного эксперимента во всей области полетов, вплоть до выхода в космос. В настоящее время в ОКБ определились по основным техническим решениям ВКС второго этапа (создание летательного аппарата по первому этапу укладывается в рамки глубокой модернизации одного из существующих сверхзвуковых летательных аппаратов). M.Wade утверждает, что на втором этапе помимо МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б и пассажирского гиперзвукового самолета. Ту-2000Б проектировался как двухместный бомбардировщик с дальностью 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6 на высоте в 30 км. Возможно, это отголоски работ по проекту «360».
До приостановки работ в 1992, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы. ЭГС должен был использовать турбопрямоточные двигатели с переменным циклом, использующие метан или жидкий водород.
По данным специалистов АНТК им. А.Н.Туполева, НИОКР можно выполнить за 13-15 лет с начала необходимого финансирования. В ценах 1995 г. стоимость постройки ВКС (при затратах на ОКР 5,29 млрд. долл.) будет около 480 млн.дол. Предполагаемая цена запуска - 13,6 млн.дол. (при темпе 20 пусков в год).
Макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92» на стенде ОКБ им.А.Н.Туполева.
В настоящее время в ОКБ продолжаются исследовательские и экспериментальные работы по программе создания ВКС Ту-2000.
Для отработки ГПВРД на жидком водороде должна использоваться ГЛЛ «Игла».
Особенности конструкции. Для ВКС принята аэродинамическая схема "бесхвостка", все элементы ВКС конструктивно интегрированы вокруг силовой установки, состоящей из четырех ТРД, находящихся в хвостовой части, основного разгонного ШПВРД, расположенного под фюзеляжем в задней его части, и двух ЖРД для маневрирования в космическом пространстве, установленных между ТРД. ВКС имеет треугольное крыло относительно небольшой площади и малого удлинения, большую роль в создании подъемной силы берет на себя фюзеляж с плоской нижней поверхностью. Органы управления традиционные для данной схемы ЛА: элевоны на крыле и руль поворота на киле. Основной двигатель - ШПВРД включает в себя воздухозаборник внешне-внутреннего сжатия, регулируемые камеры сгорания с косым срезом и многоканальную систему подачи топлива. Основной разгонный режим выполняется на ШПВРД. Воздушные каналы ТРД после достижения скорости М=2..2,5 и начала работы ШПВРД закрываются заслонками, которые в открытом состоянии образуют входное устройство воздухозаборника ТРД.
Особенностью конструкции ВКС является интегральное решение во взаимной компоновке планера и силовой установки, особенностью касающейся ШПВРД. Нижняя поверхность фюзеляжа выполняет функции: обеспечивает внешнее сжатие воздуха, входящего в ШПВРД, является верхней поверхностью замкнутой камеры внутреннего сжатия воздуха и сгорания топлива, служит верхней профилированной поверхностью сопла с косым срезом.
Фюзеляж ВКС большого размера, в основном занят топливными баками с жидким водородом. В носовой част» фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа. На экспериментальном ВКС будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.
За кабиной экипажа находится технический отсек радиоэлектронного оборудования, в этот же отсек убирается передняя стойка шасси. Средняя и задняя части фюзеляжа заняты топливным баком с жидким водородом. Для питания ЖРД окислителем в хвостовой части фюзеляжа установлен кислородный бак. Все двигатели в качестве горючего используют жидкий водород из единой топливной системы.
Шасси ВКС нормальной трехточечной схемы с носовым колесом: передняя стойка со спаренными колесами малого диметра с высоким давлением в пневматиках колес, основные стойки - одноколесные, убираются в фюзеляж в отсеки в районе крыла.
Экспериментальный ВКС второго этапа согласно предварительных расчетов ОКБ должен иметь взлетную массу в пределах 70-90 тонн, запас жидкого водорода - 30 тонн и жидкого кислорода - 5 тонн. В окончательном варианте взлетная масса ВКС увеличится до 210-280 тонн. Подобный аппарат будет доставлять на околоземную орбиту 200-400 км полезный груз в 6-10 тонн. Компоновочно он будет повторять экспериментальный ВКС, но в отличие от него, на нем планируется, устанавливать более мощный ШПВРД, число ТРД увеличить до 6, как и на экспериментальном ВКС - два ЖРД.
http://testpilot.ru/
Комментариев нет:
Отправить комментарий